Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Neuroimage ; 266: 119816, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36528311

RESUMO

Preterm birth with very low birth weight (VLBW) confers heightened risk for perinatal brain injury and long-term cognitive deficits, including a reduction in IQ of up to one standard deviation. Persisting gray and white matter aberrations have been documented well into adolescence and adulthood in preterm born individuals. What has not been documented so far is a plausible causal link between reductions in cortical surface area or subcortical brain structure volumes, and the observed reduction in IQ. The NTNU Low Birth Weight in a Lifetime Perspective study is a prospective longitudinal cohort study, including a preterm born VLBW group (birthweight ≤1500 g) and a term born control group. Structural magnetic resonance imaging data were obtained from 38 participants aged 19, born preterm with VLBW, and 59 term-born peers. The FreeSurfer software suite was used to obtain measures of cortical thickness, cortical surface area, and subcortical brain structure volumes. Cognitive ability was estimated using the Wechsler Adult Intelligence Scale, 3rd Edition, including four IQ-indices: Verbal comprehension, Working memory, Perceptual organization, and Processing speed. Statistical mediation analyses were employed to test for indirect effects of preterm birth with VLBW on IQ, mediated by atypical brain structure. The mediation analyses revealed negative effects of preterm birth with VLBW on IQ that were partially mediated by reduced surface area in multiple regions of frontal, temporal, parietal and insular cortex, and by reductions in several subcortical brain structure volumes. The analyses did not yield sufficient evidence of mediation effects of cortical thickness on IQ. This is, to our knowledge, the first time a plausible causal relationship has been established between regional cortical area reductions, as well as reductions in specific subcortical and cerebellar structures, and general cognitive ability in preterm born survivors with VLBW.


Assuntos
Nascimento Prematuro , Feminino , Adolescente , Humanos , Recém-Nascido , Adulto Jovem , Adulto , Estudos Longitudinais , Estudos Prospectivos , Encéfalo/diagnóstico por imagem , Recém-Nascido de muito Baixo Peso , Imageamento por Ressonância Magnética
2.
Pediatr Res ; 92(4): 1132-1139, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013563

RESUMO

BACKGROUND: Evidence regarding the predictive value of early amplitude-integrated electroencephalography (aEEG)/EEG on neurodevelopmental outcomes at school age and beyond is lacking. We  aimed to investigate whether there is an association between early postnatal EEG and neurocognitive outcomes in late childhood. METHODS: This study is an observational prospective cohort study of premature infants with a gestational age <28 weeks. The total absolute band powers (tABP) of the delta, theta, alpha, and beta bands were analyzed from EEG recordings during the first three days of life. At 10-12 years of age, neurocognitive outcomes were assessed using the Wechsler Intelligence Scale for Children 4th edition (WISC-IV), Vineland adaptive behavior scales 2nd edition, and Behavior Rating Inventory of Executive Function (BRIEF). The mean differences in tABP were assessed for individuals with normal versus unfavorable neurocognitive scores. RESULTS: Twenty-two infants were included. tABP values in all four frequency bands were significantly lower in infants with unfavorable results in the main composite scores (full intelligence quotient, adaptive behavior composite score, and global executive composite score) on all three tests (p < 0.05). CONCLUSIONS: Early postnatal EEG has the potential to assist in predicting cognitive outcomes at 10-12 years of age in extremely premature infants <28 weeks' gestation. IMPACT: Evidence regarding the value of early postnatal EEG in long-term prognostication in preterm infants is limited. Our study suggests that early EEG spectral analysis correlates with neurocognitive outcomes in late childhood in extremely preterm infants. Early identification of infants at-risk of later impairment is important to initiate early and targeted follow-up and intervention.


Assuntos
Eletroencefalografia , Doenças do Prematuro , Lactente , Recém-Nascido , Humanos , Criança , Estudos Prospectivos , Eletroencefalografia/métodos , Idade Gestacional , Lactente Extremamente Prematuro
3.
Front Aging Neurosci ; 13: 624253, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33658917

RESUMO

Working memory training (WMT) effects may be modulated by mild cognitive impairment (MCI) subtypes, and variations in APOE-epsilon (APOE-ε) and LMX1A genotypes. Sixty-one individuals (41 men/20 women, mean age 66 years) diagnosed with MCI (31 amnestic/30 non-amnestic) and genotyped for APOE-ε and LMX1A completed 4 weeks/20-25 sessions of WMT. Cognitive functions were assessed before, 4 weeks and 16 weeks after WMT. Except for Processing Speed, the non-amnestic MCI group (naMCI) outperformed the amnestic MCI (aMCI) group in all cognitive domains across all time-points. At 4 weeks, working memory function improved in both groups (p < 0.0001), but at 16 weeks the effects only remained in the naMCI group. Better performance was found after training for the naMCI patients with LMX1A-AA genotype and for the APOE-ε4 carriers. Only the naMCI-APOE-ε4 group showed improved Executive Function at 16 weeks. WMT improved working memory and some non-trained cognitive functions in individuals with MCI. The naMCI group had greater training gain than aMCI group, especially in those with LMX1A-AA genotype and among APOE-ε4-carriers. Further research with larger sample sizes for the subgroups and longer follow-up evaluations is warranted.

4.
Neuroimage Clin ; 23: 101857, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31136968

RESUMO

BACKGROUND: The hippocampus, an essential structure for learning and memory, has a reduced volume in preterm born (gestational age < 37 weeks) individuals with very low birth weight (VLBW: birth weight < 1500 g), which may affect memory function. However, the hippocampus is a complex structure with distinct subfields related to specific memory functions. These subfields are differentially affected by a variety of neuropathological conditions, but it remains unclear how these subfields may be affected by medical complications following preterm birth which may cause aberrant brain development, and the consequences of this on learning and memory function in children with VLBW. METHODS: Children born preterm with VLBW (n = 34) and term-born controls from the Norwegian Mother and Child Cohort Study (MoBa) (n = 104) underwent structural MRI and a neuropsychological assessment of memory function at primary school age. FreeSurfer 6.0 was used to analyze the volumes of hippocampal subfields which were compared between groups, as was memory performance. Correlations between abnormal hippocampal subfields and memory performance were explored in the VLBW group. RESULTS: All absolute hippocampal subfield volumes were lower in the children with VLBW compared to MoBa term-born controls, and the volumes of the left and right dentate gyrus and the right subiculum remained significantly lower after correcting for total intracranial volume. The VLBW group had inferior working memory performance and the score on the subtest Spatial Span backwards was positively correlated to the volume of the right dentate gyrus. CONCLUSIONS: Hippocampal subfield volumes seem to be differently affected by early brain development related to preterm birth. The dentate gyrus appears particularly susceptible to adverse effects of preterm birth. Reduced working memory function among children with VLBW was associated with smaller volume of right dentate gyrus. This finding demonstrates alterations in hippocampal structure-function relationships associated with early brain development related to preterm birth.


Assuntos
Hipocampo/crescimento & desenvolvimento , Hipocampo/patologia , Recém-Nascido de muito Baixo Peso/crescimento & desenvolvimento , Memória/fisiologia , Criança , Feminino , Hipocampo/diagnóstico por imagem , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Imageamento por Ressonância Magnética , Masculino , Fatores de Risco
5.
Front Psychol ; 10: 807, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31031677

RESUMO

OBJECTIVE: We investigated if a 5-week computerized adaptive working memory training program (Cogmed®) of 20 to 25 sessions would be effective in improving the working memory capacity and other neuropsychological functions compared to a non-adaptive working memory training program (active-controlled) in adult patients with mild cognitive impairment (MCI). METHODS: This randomized double-blinded active control trial included 68 individuals aged 43 to 88 years, 45 men and 23 women, who were diagnosed with MCI at four Memory clinics. The study sample was randomized by block randomization to either adaptive or non-adaptive computerized working memory training. All participants completed the training, and were assessed with a comprehensive neuropsychological test battery before the intervention, and at 1 and 4 months after training. RESULTS: Compared to the non-adaptive training group, the adaptive training group did not show significantly greater improvement on the main outcome of working memory performance at 1 and 4 months after training. CONCLUSION: No difference were found between the two types of training on the primary outcome of working memory, or on secondary outcomes of cognitive function domains, in this sample of MCI patients. Hence, the hypothesis that the adaptive training program would lead to greater improvements compared to the non-adaptive training program was not supported. Within group analyses was not performed due to the stringent RCT design.

7.
Neuroimage ; 188: 217-227, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30502447

RESUMO

Development of the cerebral cortex may be affected by aberrant white matter development. Preterm birth with very low birth weight (VLBW) has been associated with reduced fractional anisotropy of white matter and changes in cortical thickness and surface area. We use a new methodological approach to combine white and gray matter data and test the hypothesis that white matter injury is primary, and acts as a mediating factor for concomitant gray matter aberrations, in the developing VLBW brain. T1 and dMRI data were obtained from 47 young adults born preterm with VLBW and 73 term-born peers (mean age = 26). Cortical thickness was measured across the cortical mantle and compared between the groups, using the FreeSurfer software suite. White matter pathways were reconstructed with the TRACULA software and projected to their cortical end regions, where cortical thickness was averaged. In the VLBW group, cortical thickness was increased in anteromedial frontal, orbitofrontal, and occipital regions, and fractional anisotropy (FA) was reduced in frontal lobe pathways, indicating compromised white matter integrity. Statistical mediation analyses demonstrated that increased cortical thickness in the frontal regions was mediated by reduced FA in the corpus callosum forceps minor, consistent with the notion that white matter injury can disrupt frontal lobe cortical development. Combining statistical mediation analysis with pathway projection onto the cortical surface offers a powerful novel tool to investigate how cortical regions are differentially affected by white matter injury.


Assuntos
Córtex Cerebral/patologia , Recém-Nascido de muito Baixo Peso , Nascimento Prematuro/patologia , Substância Branca/patologia , Adulto , Anisotropia , Córtex Cerebral/crescimento & desenvolvimento , Feminino , Substância Cinzenta/crescimento & desenvolvimento , Substância Cinzenta/patologia , Humanos , Masculino , Substância Branca/crescimento & desenvolvimento , Substância Branca/lesões
8.
Front Aging Neurosci ; 10: 384, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30519185

RESUMO

In this cross-sectional study, we sought to describe cognitive and neuroimaging profiles of Memory clinic patients with Mild Cognitive Impairment (MCI). 51 MCI patients and 51 controls, matched on age, sex, and socio-economic status (SES), were assessed with an extensive neuropsychological test battery that included a measure of intelligence (General Ability Index, "GAI," from WAIS-IV), and structural magnetic resonance imaging (MRI). MCI subtypes were determined after inclusion, and z-scores normalized to our control group were generated for each cognitive domain in each MCI participant. MR-images were scored by visual rating scales. MCI patients performed significantly worse than controls on 23 of 31 cognitive measures (Bonferroni corrected p = 0.001), and on 8 of 31 measures after covarying for intelligence (GAI). Compared to nonamnestic MCI patients, amnestic MCI patients had lower test results in 13 of 31 measures, and 5 of 31 measures after co-varying for GAI. Compared to controls, the MCI patients had greater atrophy on Schelten's Medial temporal lobe atrophy score (MTA), especially in those with amnestic MCI. The only structure-function correlation that remained significant after correction for multiple comparisons was the MTA-long delay recall domain. Intelligence operationalized as GAI appears to be an important moderator of the neuropsychological outcomes. Atrophy of the medial temporal lobe, based on MTA scores, may be a sensitive biomarker for the functional episodic memory deficits associated with MCI.

9.
Neuroimage ; 167: 419-428, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29191480

RESUMO

Individuals born preterm with very low birth weight (VLBW; birth weight ≤ 1500 g) are at high risk for perinatal brain injuries and deviant brain development, leading to increased chances of later cognitive, emotional, and behavioral problems. Here we investigated the neuronal underpinnings of both reactive and proactive cognitive control processes in adults with VLBW. We included 32 adults born preterm with VLBW (before 37th week of gestation) and 32 term-born controls (birth weight ≥10th percentile for gestational age) between 22 and 24 years of age that have been followed prospectively since birth. Participants performed a well-validated Not-X continuous performance test (CPT) adapted for use in a mixed block- and event-related fMRI protocol. BOLD fMRI and DTI data was acquired on a 3T scanner. Performance on the Not-X CPT was highly similar between groups. However, the VLBW group demonstrated hyper-reactive cognitive control processing and disrupted white matter organization. The hyper-reactive brain activation signature in VLBW adults was associated with lower gestational age, lower fluid intelligence score, and anxiety problems. Automated Multi-Atlas Tract Extraction (AutoMATE) analyses revealed that this disruption of normal brain function was accompanied by poorer white matter organization in the anterior thalamic radiation and the cingulum, as reflected in both reduced fractional anisotropy and increased mean diffusivity. These findings show that the preterm behavioral phenotype is associated with predominantly reactive-, rather than proactive cognitive control processing, as well as white matter abnormalities, that may underlie common difficulties that many preterm born individuals experience in everyday life.


Assuntos
Função Executiva/fisiologia , Desenvolvimento Humano/fisiologia , Recém-Nascido Prematuro/fisiologia , Recém-Nascido de muito Baixo Peso/fisiologia , Inteligência/fisiologia , Desempenho Psicomotor/fisiologia , Substância Branca/patologia , Adulto , Imagem de Tensor de Difusão , Feminino , Seguimentos , Humanos , Imageamento por Ressonância Magnética , Masculino , Substância Branca/diagnóstico por imagem , Adulto Jovem
10.
Ann Neurol ; 81(1): 17-34, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27761943

RESUMO

OBJECTIVE: We aimed to evaluate the effectiveness of an adaptive working memory (WM) training (WMT) program, the corresponding neural correlates, and LMX1A-rs4657412 polymorphism on the adaptive WMT, in human immunodeficiency virus (HIV) participants compared to seronegative (SN) controls. METHODS: A total of 201 of 206 qualified participants completed baseline assessments before randomization to 25 sessions of adaptive WMT or nonadaptive WMT. A total of 74 of 76 (34 HIV, 42 SN) completed adaptive WMT and all 40 completed nonadaptive WMT (20 HIV, 20 SN) and were assessed after 1 month, and 55 adaptive WMT participants were also assessed after 6 months. Nontrained near-transfer WM tests (Digit-Span, Spatial-Span), self-reported executive functioning, and functional magnetic resonance images during 1-back and 2-back tasks were performed at baseline and each follow-up visit, and LMX1A-rs4657412 was genotyped in all participants. RESULTS: Although HIV participants had slightly lower cognitive performance and start index than SN at baseline, both groups improved on improvement index (>30%; false discovery rate [FDR] corrected p < 0.0008) and nontrained WM tests after adaptive WMT (FDR corrected, p ≤ 0.001), but not after nonadaptive WMT (training by training type corrected, p = 0.01 to p = 0.05) 1 month later. HIV participants (especially LMX1A-G carriers) also had poorer self-reported executive functioning than SN, but both groups reported improvements after adaptive WMT (Global: training FDR corrected, p = 0.004), and only HIV participants improved after nonadaptive WMT. HIV participants also had greater frontal activation than SN at baseline, but brain activation decreased in both groups at 1 and 6 months after adaptive WMT (FDR corrected, p < 0.0001), with normalization of brain activation in HIV participants, especially the LMX1A-AA carriers (LMX1A genotype by HIV status, cluster-corrected-p < 0.0001). INTERPRETATION: Adaptive WMT, but not nonadaptive WMT, improved WM performance in both SN and HIV participants, and the accompanied decreased or normalized brain activation suggest improved neural efficiency, especially in HIV-LMX1A-AA carriers who might have greater dopaminergic reserve. These findings suggest that adaptive WMT may be an effective adjunctive therapy for WM deficits in HIV participants. ANN NEUROL 2017;81:17-34.


Assuntos
Lobo Frontal/fisiologia , Soropositividade para HIV/fisiopatologia , Soropositividade para HIV/psicologia , Aprendizagem/fisiologia , Memória de Curto Prazo/fisiologia , Função Executiva , Feminino , Genótipo , Humanos , Proteínas com Homeodomínio LIM/genética , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Fatores de Transcrição/genética
12.
Artigo em Inglês | MEDLINE | ID: mdl-26985236

RESUMO

BACKGROUND: Preterm birth at very low birth weight (VLBW) poses a risk for cerebellar abnormalities and increased psychiatric morbidity compared with reference populations. We aimed to study cerebellar volumes (grey and white matter; GM, WM) and mental health in VLBW individuals and controls at 15 and 19 years of age, as well as changes between the two time points. METHODS: Forty VLBW (≤1500 g) and 56 control adolescents were included in the study at 15 years of age, and 44 VLBW and 60 control adolescents at 19 years of age. We had longitudinal data for 30 VLBW participants and for 37 controls. Clinical diagnoses were assessed following the schedule for affective disorders and schizophrenia for school-age children (KSADS). Psychiatric symptoms and function were further investigated with the Achenbach System of Empirically Based Assessment (ASEBA), ADHD Rating Scale-IV and the children's global assessment scale (CGAS). An automatic segmentation of cerebellar GM and WM volumes was performed in FreeSurfer. The MRI scans were obtained on the same 1.5T scanner at both ages. RESULTS: The VLBW group had higher rates of psychiatric disorders at both ages. Cerebellar growth trajectories did not differ between VLBW adolescents and controls, regardless of psychiatric status. However, VLBW adolescents who had a psychiatric diagnosis at both ages or developed a psychiatric disorder from 15 to 19 years had maintained smaller cerebellar WM and GM volumes than controls and also smaller volumes than VLWB adolescents who were or became healthy in this period. Moreover, there were no differences in cerebellar WM and GM volumes between controls and those VLBW who were healthy or became healthy. In the VLBW group, cerebellar WM and GM volumes correlated positively with psycho-social function at both 15 and 19 years of age, and smaller GM volumes were associated with inattention at 15 years. CONCLUSIONS: Smaller cerebellar volume in adolescents born very preterm and with VLBW may be a biomarker of increased risk of psychiatric problems in young adulthood.

14.
Cortex ; 75: 120-131, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26773236

RESUMO

While cross-sectional neuroimaging studies on cortical development predict reductions in cortical volume (surface area and thickness) during adolescence, this is the first study to undertake a longitudinal assessment of cortical surface area changes across the continuous cortical surface during this period. We studied the developmental dynamics of cortical surface area and thickness in adolescents and young adults (aged 15-20) born with very low birth weight (VLBW; <1500 g) as well as in term-born controls. Previous studies have demonstrated brain structural abnormalities in cortical morphology, as well as long-term motor, cognitive and behavioral impairments, in adolescents and young adults with VLBW, but the developmental dynamics throughout adolescence have not been fully explored. T1-weighted MRI scans from 51 VLBW (27 scanned twice) and 79 term-born adolescents (37 scanned twice) were used to reconstruct the cortical surface and produce longitudinal estimates of cortical surface area and cortical thickness. Linear mixed model analyses were performed, and the main effects of time and group, as well as time × group interaction effects, were investigated. In both groups, cortical surface area decreased up to 5% in some regions, and cortical thickness up to 8%, over the five-year period. The most affected regions were located on the lateral aspect of the hemispheres, in posterior temporal, parietal and to some extent frontal regions. There was no significant interaction between time and group for either morphometry variable. In conclusion, cortical thickness decreases from 15 to 20 years of age, in a similar fashion in the clinical and control groups. Moreover, we show for the first time that developmental trajectories of cortical surface area in preterm and term-born adolescents do not diverge during adolescence.


Assuntos
Mapeamento Encefálico , Córtex Cerebral/crescimento & desenvolvimento , Recém-Nascido de muito Baixo Peso/crescimento & desenvolvimento , Inteligência/fisiologia , Adolescente , Adulto , Córtex Cerebral/patologia , Estudos Transversais , Feminino , Humanos , Recém-Nascido Prematuro , Estudos Longitudinais , Imageamento por Ressonância Magnética/métodos , Masculino , Adulto Jovem
15.
Neuroimage ; 130: 24-34, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26712340

RESUMO

Preterm birth and very low birth weight (VLBW, ≤1500 g) are worldwide problems that burden survivors with lifelong cognitive, psychological, and physical challenges. In this multimodal structural magnetic resonance imaging (MRI) and diffusion MRI (dMRI) study, we investigated differences in subcortical brain volumes and white matter tract properties in children born preterm with VLBW compared to term-born controls (mean age=8 years). Subcortical brain structure volumes and cortical thickness estimates were obtained, and fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD) were generated for 18 white matter tracts. We also assessed structural relationships between white matter tracts and cortical thickness of the tract endpoints. Compared to controls, the VLBW group had reduced volumes of thalamus, globus pallidus, corpus callosum, cerebral white matter, ventral diencephalon, and brain stem, while the ventricular system was larger in VLBW subjects, after controlling for age, sex, IQ, and estimated total intracranial volume. For the dMRI parameters, group differences were not significant at the whole-tract level, though pointwise analysis found shorter segments affected in forceps minor and left superior longitudinal fasciculus - temporal bundle. IQ did not correlate with subcortical volumes or dMRI measures in the VLBW group. While the deviations in subcortical volumes were substantial, there were few differences in dMRI measures between the two groups, which may reflect the influence of advances in perinatal care on white matter development.


Assuntos
Encéfalo/crescimento & desenvolvimento , Encéfalo/patologia , Recém-Nascido de muito Baixo Peso/crescimento & desenvolvimento , Criança , Estudos de Coortes , Imagem de Tensor de Difusão , Feminino , Humanos , Recém-Nascido , Imageamento por Ressonância Magnética , Masculino , Substância Branca/patologia
16.
Subst Abuse ; 9(Suppl 2): 67-75, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26692762

RESUMO

This paper presents a new initiative in the South-Eastern Health Region of Norway to establish a regional resource center focusing on services for children and adolescents aged 2-18 years with prenatal exposure to alcohol or other drugs. In Norway, the prevalence of fetal alcohol spectrum (FAS) is not known but has been estimated to be between 1 and 2 children per 1000 births, while the prevalence of prenatal exposure to illicit drugs is unknown. The resource center is the first of its kind in Scandinavia and will have three main objectives: (1) provide hospital staff, community health and child welfare personnel, and special educators with information, educational courses, and seminars focused on the identification, diagnosis, and treatment of children with a history of prenatal alcohol/drug exposure; (2) provide specialized health services, such as diagnostic services and intervention planning, for children referred from hospitals in the South-Eastern Health Region of Norway; and (3) initiate multicenter studies focusing on the diagnostic process and evaluation of interventions.

17.
Neuroimage Clin ; 8: 193-201, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26106543

RESUMO

Children born prematurely with very low birth weight (VLBW: bw  ≤ 1500 g) have an increased risk of preterm perinatal brain injury, which may subsequently alter the maturation of the brain, including the cerebral cortex. The aim of study was to assess cortical thickness and surface area in VLBW children compared with term-born controls, and to investigate possible relationships between cortical morphology and Full IQ. In this cross-sectional study, 37 VLBW and 104 term children born between the years 2003-2007 were assessed cognitively at 5-10 years of age, using age appropriate Wechsler tests. The FreeSurfer software was used to obtain estimates of cortical thickness and surface area based on T1-weighted MRI images at 1.5 Tesla. The VLBW children had smaller cortical surface area bilaterally in the frontal, temporal, and parietal lobes. A thicker cortex in the frontal and occipital regions and a thinner cortex in posterior parietal areas were observed in the VLBW group. There were significant differences in Full IQ between groups (VLBW M = 98, SD = 9.71; controls M = 108, SD = 13.57; p < 0.001). There was a positive relationship between IQ and surface area in both groups, albeit significant only in the larger control group. In the VLBW group, reduced IQ was associated with frontal cortical thickening and temporo-parietal thinning. We conclude that cortical deviations are evident in childhood even in VLBW children born in 2003-2007 who have received state of the art medical treatment in the perinatal period and who did not present with focal brain injuries on neonatal ultrasonography. The cortical deviations were associated with reduced cognitive functioning.


Assuntos
Córtex Cerebral/patologia , Recém-Nascido Prematuro , Recém-Nascido de muito Baixo Peso , Inteligência/fisiologia , Criança , Pré-Escolar , Estudos Transversais , Feminino , Humanos , Recém-Nascido , Imageamento por Ressonância Magnética , Masculino
18.
Neuroimage ; 109: 493-504, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25592994

RESUMO

Individuals born preterm and at very low birth weight (birth weight ≤ 1500 g) are at an increased risk of perinatal brain injury and neurodevelopmental deficits over the long term. This study examined whether this clinical group has more problems with visual-motor integration, motor coordination, and visual perception compared to term-born controls, and related these findings to cortical surface area and thickness and white matter fractional anisotropy. Forty-seven preterm-born very low birth weight individuals and 56 term-born controls were examined at 18-22 years of age with a combined cognitive, morphometric MRI, and diffusion tensor imaging evaluation in Trondheim, Norway. Visual-motor skills were evaluated with the Beery-Buktenica Developmental Test of Visual-Motor Integration-V (VMI) copying test and its supplemental tests of motor coordination and visual perception. 3D T1-weighted MPRAGE images and diffusion tensor imaging were done at 1.5 T. Cortical reconstruction generated in FreeSurfer and voxelwise maps of fractional anisotropy calculated with Tract-Based Spatial Statistics were used to explore the relationship between MRI findings and cognitive results. Very low birth weight individuals had significantly lower scores on the copying and motor coordination tests compared with controls. In the very low birth weight group, VMI scores showed significant positive relationships with cortical surface area in widespread regions, with reductions of the superior temporal gyrus, insula, and medial occipital lobe in conjunction with the posterior ventral temporal lobe. Visual perception scores also showed positive relationships with cortical thickness in the very low birth weight group, primarily in the lateral occipito-temporo-parietal junction, the superior temporal gyrus, insula, and superior parietal regions. In the very low birth weight group, visual-motor performance correlated positively with fractional anisotropy especially in the corpus callosum, inferior fronto-occipital fasciculus bilaterally, and anterior thalamic radiation bilaterally, driven primarily by an increase in radial diffusivity. VMI scores did not demonstrate a significant relationship to cortical surface area, cortical thickness, or diffusion measures in the control group. Our results indicate that visual-motor integration problems persist into adulthood for very low birth weight individuals, which may be due to structural alterations in several specific gray-white matter networks. Visual-motor deficits appear related to reduced surface area of motor and visual cortices and disturbed connectivity in long association tracts containing visual and motor information. We conjecture that these outcomes may be due to perinatal brain injury or aberrant cortical development secondary to injury or due to very preterm birth.


Assuntos
Encéfalo/anormalidades , Substância Cinzenta/patologia , Transtornos Psicomotores/patologia , Substância Branca/patologia , Adolescente , Adulto , Anisotropia , Encéfalo/crescimento & desenvolvimento , Imagem de Difusão por Ressonância Magnética , Imagem de Tensor de Difusão , Feminino , Substância Cinzenta/crescimento & desenvolvimento , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Recém-Nascido de muito Baixo Peso , Masculino , Testes Neuropsicológicos , Transtornos Psicomotores/etiologia , Percepção Visual , Substância Branca/crescimento & desenvolvimento , Adulto Jovem
19.
Neuroimage ; 105: 76-83, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25451477

RESUMO

The hippocampi are regarded as core structures for learning and memory functions, which is important for daily functioning and educational achievements. Previous studies have linked reduction in hippocampal volume to working memory problems in very low birth weight (VLBW; ≤ 1500 g) children and reduced general cognitive ability in VLBW adolescents. However, the relationship between memory function and hippocampal volume has not been described in VLBW subjects reaching adulthood. The aim of the study was to investigate memory function and hippocampal volume in VLBW young adults, both in relation to perinatal risk factors and compared to term born controls, and to look for structure-function relationships. Using Wechsler Memory Scale-III and MRI, we included 42 non-disabled VLBW and 61 control individuals at age 19-20 years, and related our findings to perinatal risk factors in the VLBW-group. The VLBW young adults achieved lower scores on several subtests of the Wechsler Memory Scale-III, resulting in lower results in the immediate memory indices (visual and auditory), the working memory index, and in the visual delayed and general memory delayed indices, but not in the auditory delayed and auditory recognition delayed indices. The VLBW group had smaller absolute and relative hippocampal volumes than the controls. In the VLBW group inferior memory function, especially for the working memory index, was related to smaller hippocampal volume, and both correlated with lower birth weight and more days in the neonatal intensive care unit (NICU). Our results may indicate a structural-functional relationship in the VLBW group due to aberrant hippocampal development and functioning after preterm birth.


Assuntos
Hipocampo/crescimento & desenvolvimento , Recém-Nascido de muito Baixo Peso/psicologia , Memória/fisiologia , Nascimento Prematuro/psicologia , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Recém-Nascido , Imageamento por Ressonância Magnética , Masculino , Testes Neuropsicológicos , Adulto Jovem
20.
Neuropsychologia ; 66: 144-56, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25448863

RESUMO

Lesion studies have indicated that at least the three executive processes can be differentiated in the frontal lobe: Energization, monitoring and task setting. Event related potentials (ERPs) in Go/NoGo tasks have been widely used in studying executive processes. In this study, ERPs were obtained from EEG recorded during performance of a cued Go/NoGo task. The Contingent Negative Variation (CNV) and P3NoGo waves were decomposed into four independent components (ICs), by applying Independent Component Analysis (ICA) to a collection of ERPs from 193 healthy individuals. The components were named IC CNVearly, IC CNVlate, IC P3NoGoearly and IC P3NoGolate according to the conditions and time interval in which they occurred. A sub-group of 28 individuals was also assessed with neuropsychological tests. The test parameters were selected on the basis of studies demonstrating their sensitivity to executive processes as defined in the ROtman-Baycrest Battery for Investigating Attention (ROBBIA) model. The test scores were categorized into the domain scores of energization, monitoring and task setting and correlated with the amplitudes of the individual ICs from the sub-group of 28 individuals. The energization domain correlated with the IC CNVlate and IC P3NoGoearly. The monitoring domain correlated with the IC P3NoGolate, while the task setting domain correlated with the IC CNVlate. The IC CNVearly was not correlated with any of the neuropsychological domain scores. The correlations between the domains and ICs remained largely unchanged when controlling for full-scale IQ. This is the first study to demonstrate that executive processes, as indexed by neuropsychological test parameters, are associated with particular event-related potentials in a cued Go/NoGo paradigm.


Assuntos
Eletroencefalografia/métodos , Potenciais Evocados , Função Executiva/fisiologia , Lobo Frontal/fisiologia , Adulto , Interpretação Estatística de Dados , Feminino , Humanos , Masculino , Testes Neuropsicológicos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...